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Abstract—This final project explores deep reinforcement learn-
ing for autonomous robot navigation like 2D environment using
the Deep Deterministic Policy Gradient (DDPG) algorithm and
Twin Delayed DDPG (TD3) algorithm. The agent is a differential-
drive TurtleBot robot is trained in a custom simulator build using
pygame to reach a target goal without collisions. We develop a
shaped reward function that penalizes collisions and inefficient
motion while rewarding progress toward the goal. The DDPG
agent uses continuous wheel speed commands as actions and
learns via an actor-critic approach. The agent demonstrates
improved navigation performance, significantly reducing collision
occurrences and increasing its cumulative rewards over time.
However, training instabilities in the Q-value estimates were
observed, and this was solved by the integration of the Twin
Delayed DDPG (TD3) algorithm for improvements over Q-values
instabilities. This project highlights the potential of model-free
deep reinforcement learning for robot navigation and identifies
challenges and future directions for enhancing learning for
Autonomous Navigation in Robots.

I. INTRODUCTION

Autonomous navigation is a fundamental problem in

robotics, requiring an agent to reach a goal location while
avoiding obstacles both static and dynamic. Traditional nav-
igation approaches rely on mapping and global and local
planning algorithms, but recent advances in reinforcement
learning introduce the ability for robots to learn navigation
policies from experience in the simulation. For instance, deep
reinforcement learning can handle multi-dimensional inputs
and learn complex policies, making it useful for continuous
end to end robot control. This project is about applying deep
RL to train an agent (Mobile Robot — TurtleBot) to navigate
in a custom simulated environment (EscapeRoomEnv). The
environment presents an escape room scenario where the robot
must find its way to an exit or goal area within a walled space
like escaping a room.
We employ the Deep Deterministic Policy Gradient (DDPG)
algorithm [1] and Twin Delayed DDPG (TD3) algorithm [2]
continuous control task. DDPG is an actor-critic method that
has shown success in continuous action domains by learning
a deterministic policy with the help of a learned critic Q-
function. It is well-suited for our navigation problem where the
action space which are left wheel and right wheel velocities is
continuous. The goal is to train the robot’s policy to maximize
cumulative reward by encourage reaching the goal quickly
while minimizing collisions and inefficient movements which
is the ratio of the shortest path to the longest path taken.
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II. TECHNICAL DEFINITION

Our problem involves training a differential drive robot
(agent) operating in a continuous state-action space.

A. State Space

The agent’s state s; at time step ¢ includes the robot’s
position (z,y:), orientation 6, linear velocities (vg,,vy,),
and angular velocity w;. Also, the state encodes the relative
position and orientation towards the goal, specifically the
distance to the goal d; and angle difference A6;. Thus, the
state vector is the following

St = [I’f/a Yt 01‘/7 Vgys Uyyy Wi, dt7 Aet]

B. Action Space

The agent’s action a; is a continuous two-dimensional vec-
tor controlling the left and right wheel velocities, normalized
to the range [—1,1]. Internally, actions are scaled by the
maximum wheel velocity Vj.x Differential drive kinematics
define robot motion equal wheel speeds yield straight-line mo-
tion, unequal speeds result in turning, and opposite directions
facilitate rotations in place.

ay = (uLvuR)a UL, UR € [_171]

v = UL - Vmax, VR = UR - Vinax

C. Transition Dynamics

Robot motion follows deterministic kinematic equations for
a differential drive system. Given current state s; and action a,
the robot’s next state s;;; is computed by integrating wheel
velocities over a discrete time interval At and collisions with
walls or boundaries trigger penalties, reverting the robot’s state
to the last valid configuration.

Tip1 = Tt + vy cos(0y) At
Ye+1 = Yt + ve sin(0y) At

9t+1 = 9t + tht



D. Reward Function

The shaped reward r, guides robot behavior with several
following components

o Step Penalty - A small negative reward —a per step,
discouraging slow navigation

Tstep = — &

« Distance-based Reward - Rewards getting closer to the
goal and penalizes moving away, scaled logarithmically
based on distance improvement Ad = dgiq — dpew

+log(1 + Ad),
Tdistance =
distance —log(l—Ad)7

if Ad >0
it Ad <0

« Heading Alignment Penalty - Penalizes large deviations
(A0) greater than a threshold (7 /6), plus an extra penalty
if angular velocity (w) is high

—log(1+Af) —a-1w> F], if A0>F
Theading = .
0, otherwise

o Goal Reward - Large positive reward upon reaching the
goal, including a time-based bonus encouraging quicker
completion

-B -«

max_steps — ¢
= g (1 )

where B = 10000.

e Collision Penalty - Immediate negative reward for
collisions; minor collisions yield small penalties (e.g.,
-5), boundary or severe collisions incur larger penalties
and potentially terminate the episode.

E. Episode Termination Conditions
Episodes terminate under the following conditions

e Goal reached (successful termination).
« Irrecoverable collision or boundary violation (failure ter-
mination).
o Maximum allowed steps per episode exceeded (failure
termination).
The goal is to learn an optimal policy 7*(s) that balances
efficient goal-reaching with obstacle avoidance, given the con-
straints of differential drive dynamics and partial observability.

III. SIMULATION DESIGN

EscapeRoomEny is a custom 2D simulation environment
built following the OpenAl Gym interface reset () and
step () designed specifically for training differential-drive
robot navigation in escape-room scenarios.

A. Environment Layout

The environment is a bounded 2D rectangular plane with
dimensions 600 x 500 units. Boundaries act as solid walls,
and this internal walls create obstacles. Walls are represented
as rectangles or line segments.

B. Robot Model

The robot, modeled as a differential-drive TurtleBot, is char-
acterized by a circular body and pose (z,y,6), indicating its
position and orientation. The robot’s wheel velocities (vy,,vr)
are directly controlled through agent actions. At episode start,
the robot initializes at a predefined location and orientation,
which near one corner, with its size allowing free passage
through openings. Robot kinematics for position updates per
timestep At

Zep1 = Tt + vy cos(0y) At,

Yi+1 = Yt + V¢ Sin(et)At,
9t+1 = 9t + tht
C. Goal

The robot aims to reach a designated goal position repre-
sented as a circular region with a fixed radius. The goal’s posi-
tion is fixed for training consistency but could be randomized
for generalization.

D. Observation Space

The observation state provided to the agent consists of two
key components

« Distance to goal:

dgoat = ||goal.position — robot.position|
« Relative angle to goal:
A§ = normalize(Oropor — Ogoal)

where Af € [—m, 7], calculated via

egoal = atanz(ygoal — Yrobot; Lgoal — xrobot)
E. Action Space

Actions are continuous two-dimensional vectors (ur,ug),
normalized to [—1,1] and scaled to the robot’s maximum
wheel velocity Viax

v = UL - Vmax, VYR = UR - Vinax

Examples of actions are the following
« Forward motion: (1.0, 1.0)
o In-place rotation: (1.0, —1.0)

F. Physics and Collision Handling

Each simulation step (At) updates robot position and ori-
entation according to differential-drive kinematics. Collision
checking occurs immediately after state updates. Collision
logic includes the following

» Compute tentative next position (a/,y").

e Check boundary (out-of-bounds) and internal obstacle

collisions (circle-rectangle intersection tests).

o Assign penalties:

— Boundary collision: p = —10, flag O = True
— Obstacle collision: p = —5, flag O = False

o If a collision occurs, revert robot position to the previous

safe state.



G. Reset Function

At env.reset(), the robot and environment are reinitialized

« Robot is positioned at initial location with zero velocity.

o Goal and walls positions remain constant.

o Internal state (e.g., step count ¢ = 0, distance to goal
Dygjq) is reset.

o Returns the initial observation (distance and angle to
goal).

H. Rendering

An optional render function provides real-time visualization
of the robot, goal, and walls for debugging and demonstration
purposes.

* pygame window

o

Fig. 1. Rendering of the Environment

IV. RL ALGORITHMS

We utilize two reinforcement learning algorithms Deep De-
terministic Policy Gradient (DDPG) and its improved variant
Twin Delayed Deep Deterministic Policy Gradient (TD3) due
to their effectiveness in continuous-action tasks like robot
navigation.

A. Deep Deterministic Policy Gradient (DDPG)

DDPG is an actor-critic method designed for continuous
action spaces. It involves two neural networks:

e Actor network p(s|0*), outputs deterministic actions
given state s.

o Critic network Q(s, a|0%), estimates expected cumula-
tive rewards (Q-values) given state-action pairs.

In our implementation, both networks are feed-forward with

ReLU activations. The actor outputs actions in the range
[—1,1] (scaled by Vi)

[ Step Function Call ]

Calculate tentative
new pose: (¥, y', 8

Check for

collision Assign penalty p=-10

Set collision flag to |
True

{Initialize collision flag} ¢

to False Revert robot pose to
l last safe position

...

hy "

Update environment
state

Fig. 2. Flowchart of the robot’s movement update and collision checking
logic

o Actor network structure:
wu(s|0*) : s = [64N] — [64N] — tanh(output)
o Critic network structure:
Q(s,al0%) : [s,a] — [64N] — [64N] — [output Q-value]

Training Procedure: We employ experience replay and soft
target networks (Lrg, Quarg) to stabilize training. Each training
episode follows:

1) Action selection with exploration noise with OU

process

agxec _ u(stwu) +M7

2) Environment interaction - Execute a{**‘, obtain new
state s;41, reward r;, and done flag d;.

3) Store transition - (s;, a;, 7, St+1,d;) in replay buffer.

4) Critic update - Minimize MSE loss for batch of tran-
sitions

N, ~0U(6 = 0.15,0 = 0.2)

Yi =1 + ’YQtarg(nglutarg(S/i)) . (]— - dz)

Critic loss
1 2
LQ(HQ) = N Z (Q(Si,ain) - yz)

5) Actor update - Maximize expected Q-value by mini-
mizing actor loss

Lu(0) =~ 32 Qi (10" 09)



6) Soft target updates

G{ZHg — 70" 4+ (1 — T)Gf;rg

Ozg < 709 + (1 - T)0%,

We set 7 = 0.001, discount factor v = 0.99, actor learning

rate 10, critic learning rate 10~3, and batch size 64. Inputs
are normalized for stability.

B. Twin Delayed Deep Deterministic Policy Gradient (TD3)

TD3 improves upon DDPG by addressing overestimation
and instability through three primary techniques:

o Clipped Double Q-learning - Maintains two critic net-
works (Q1, (Q2, using the minimum to compute targets

Yi =1 + ’7}21112 Qtarg,j (S;» ﬂtarg(sg))

Critic loss

. 1 . .
Lo(69) = = 3~ (Qisi,ailo®) —ys)*, j=1,2

o Delayed policy updates - Actor and target networks
updated less frequently (e.g., once per two critic updates),
ensuring stable Q-value estimates.

o Target policy smoothing - Adds clipped noise to actions
during target calculation, regularizing Q-estimates:

e~N(0,0), le<c

a’ = clip(pare (') +€,—1,1),

TD3’s target update becomes
Yy=r+r j@%% Qlarg,j (3/7 a/)

C. Training Tools

Training was conducted using our custom EscapeRoomEnv
with PyTorch implementations of DDPG and planned TD3
methods. Training duration was about 1500 episodes, taking
a few hours on Nvidia RTX4070 hardware. Metrics tracked
include episode rewards, actor loss, and critic loss, providing
clear indications of learning progression.

DDPG established baseline agent performance. TD3’s inte-
gration is to mitigate observed DDPG instabilities, enhancing
the robustness and effectiveness of the trained navigation

policy.

V. EMPIRICAL RESULTS

Analysis of DDPG

We trained the DDPG agent in the EscapeRoomEnv for
1500 episodes, evaluating its performance via cumulative
rewards (episode scores) and actor-critic losses. We present
key observations below.

DDPG - Episode Reward Analysis

The primary metric of success is the cumulative reward per
episode, defined as:

T
Repisode = § Tt
t=0

« Initially (episodes 0-200), scores were substantially neg-
ative (—8000 to —10000), indicating frequent collisions
and ineffective navigation.

e Mid-training (episodes ~500), performance improved
significantly (scores between —2000 and 0), showing
decreased collisions and improved navigation toward the
goal.

o Late training (episodes ~1200-1500), scores plateaued
near 0, occasionally dipping to large negative values
(around —6000), suggesting persistent instability and
incomplete task learning. Importantly, the goal reward
(+10000) was rarely achieved, indicating partial but not
complete convergence.

Average Scores Over Episodes

T

6000

-8000

—— Average Score per Episode
~10000 4 --- Mean Score: -1370.19
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Episode

Fig. 3. Episode rewards over the course of training

DDPG - Actor Loss Analysis

The actor network loss (Lacor) 1S defined as the negative
mean Q-value predicted by the critic for the actions chosen
by the actor:

LaClOI‘(elL Z Q S’H /’[/ 87/|01L)|9Q)

e The actor loss smoothly decreased throughout training
from approximately O to around —1700 by the final
episodes.

o The steady decrease indicates improved action selec-
tion, as lower (more negative) actor loss implies higher
predicted Q-values, suggesting the actor was effectively
optimizing actions toward higher returns.

DDPG - Critic Loss Analysis

The critic loss (Leic) measures the mean squared error
(MSE) between predicted Q-values and target values:

Z

2
LCrith 57; a1,|9 - yz)



Average Actor Loss Over Episodes

—— Average Actor Loss per Episode
-~ Mean Actor Loss: -283.62
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Fig. 4. Actor loss (policy loss) over episodes

where the target y; is

Y =1 + 'YQlarg(ng Ntarg(sg))(l - di)

o The critic loss showed significant volatility and increased
dramatically during training, reaching very high values
(exceeding 50,000), signaling instability and difficulty
approximating accurate Q-values.

o Such instability likely arose due to DDPG’s inherent
issues like overestimation of Q-values, exacerbated by
large and sparse goal rewards.

Average Critic Loss Over Episodes

—— Average Critic Loss per Episode
70000 { -~~~ Mean Critic Loss: 13570.56
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Fig. 5. Actor loss (policy loss) over episodes

DDPG - Qualitative Observations

« Early episodes - The robot exhibited random and ineffec-
tive behaviors, frequently colliding or spinning aimlessly.

e Post-training behavior - Improved navigation with re-
duced collisions, cautious maneuvers near obstacles, and
active search behaviors around obstructions.

o Challenges Without explicit obstacle sensing, the robot
relied solely on collision feedback and reward signals,
resulting in occasional local minima traps and inefficient
obstacle circumvention strategies.

Analysis of TD3

We trained the Twin Delayed Deep Deterministic Policy
Gradient (TD3) agent for a total of 5000 episodes in our
custom EscapeRoomEny. During training, we monitored three
critical metrics: episode scores (cumulative rewards), critic
loss, and actor loss. The results, shown in Figure 1, illustrate
significant learning trends and some notable instabilities.

TD3 - Episode Reward Analysis

The episode reward Repisode 1S defined as:

Average Score

T
Repisode = § Tt
t=0

Initial Training (Episodes 0-500) The agent begins with
highly negative scores (frequently below —5000, with
some episodes reaching as low as —14000), indicating
frequent and severe collisions with obstacles or boundary
walls, and ineffective navigation strategies.

Intermediate Training (Episodes 500-2000) Episode re-
wards steadily improved and stabilized around values
close to 0, typically ranging from —2000 to slightly below
0. This improvement suggests significant progress in
collision avoidance and goal-directed behavior. Although
major collisions decreased, the agent still frequently
incurred small penalties, indicating partial but incomplete
learning.

Late Training (Episodes 2000-5000) The rewards
plateaued near zero but retained high variance. Occa-
sional severe drops (below —6000 and some rare extreme
negative spikes around —12000) occurred, suggesting pe-
riodic instability or exploratory failures. The mean cumu-
lative reward across the entire training period stabilized
at approximately —609.28. Despite these fluctuations, the
general trend toward near-zero average scores indicated
significant learning and substantial reduction in collisions.

Average Scares Over Episodes
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Fig. 6. Actor loss (policy loss) over episodes

TD3 - Critic Loss Analysis
The critic 10ss Lcsiic, defined by mean squared error (MSE)

between predicted and target Q-values, is calculated as

N
1
Leiic(09) = =) (Q(s4,a:]09) — yi)2 :
N
=1

Yi =1 + 'YJ,IEilrlz Qtarg,j(sga a/)
— 4

Early Training (Episodes 0-1000) initially, the critic
loss started low and briefly increased around episodes
200-500, reaching peaks between 500 and 1000. Early
instability is typical due to exploration variance, but
it subsequently stabilized significantly between episodes



1000-2000, indicating that the critic network learned
more accurate Q-value predictions.

e Mid Training Stability (Episodes 1000-3000) between
episodes 1000-3000, the critic loss remained relatively
stable and low, suggesting accurate Q-function approx-
imation during this period, contributing positively to
policy improvement.

o Late Training Instability (Episodes 3000-50000 post
episode 3000, critic loss exhibited notable volatility, sig-
nificantly increasing and regularly spiking, occasionally
exceeding values of 2000. These spikes indicate peri-
odic overestimation issues and instability in the critic’s
Q-value predictions. The overall mean critic loss was
approximately 148.57, indicating moderate average critic
stability, though late-stage instability poses challenges for
consistent learning.

Average Critic Loss Over Episodes

—— Average Critic Loss per Episode
2000 1 -~ Mean Critic Loss: 148.57

1500

1000
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Fig. 7. Actor loss (policy loss) over episodes

TD3 - Actor Loss Analysis

The actor loss L, representing the negative mean Q-value
of actor-selected actions (thus maximizing Q-value through
minimization), is expressed as:

1 N
Lactor(eﬂ) = _N ZQ(&,M(SJWHQQ)
=1

e Early Training (Episodes 0-1000) initially, actor loss
quickly rose positively from 0 to approximately 4150,
indicating initially poor actions evaluated negatively by
the critic (low Q-values). This initial rise was followed
by a steady and consistent reduction, indicating the actor
rapidly learned to select better-valued actions.

e Mid Training Improvement (Episodes 1000-3000) the ac-
tor loss showed steady improvement, crossing below zero
around episode 1500 and stabilizing between episodes
2000 and 3000. This clear downward trajectory suggests
effective actor learning, with increasingly favorable Q-
value evaluations for its actions.

e Late Training Stability and Improvement (Episodes
3000-5000) despite critic volatility during later episodes,
the actor maintained relatively stable and gradually im-
proving loss values. Towards the end of training (episode
5000), the actor loss significantly dipped below —100,
indicating that the actor continued to identify and choose

actions that the critic deemed highly valuable. The over-
all mean actor loss across training was approximately
—34.11, reflecting consistent improvement in policy qual-

ity.

Average Actor Loss Over Episodes

—— Average Actor Loss per Episode
-~ Mean Actor Loss: -34.11
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Fig. 8. Actor loss (policy loss) over episodes

TD3 - Qualitative Observations

o Improved Collision Avoidance - The TD3 agent signifi-
cantly improved collision avoidance compared to initial
performance, demonstrating learned caution and better
trajectory planning, even without explicit obstacle sen-
SOrs.

o Cautious but Incomplete Goal reaching - Although con-
sistently avoiding severe collisions by late-stage training,
the agent still occasionally exhibited ineffective explo-
ration strategies, resulting in near-goal hesitation and
missed goal completions. The agent generally reached
vicinity regions but rarely fully accomplished goal ob-
jectives.

e Critic-induced Policy Variability - Periodic critic loss
spikes correlated with episodes of drastically lower re-
wards, suggesting that critic instability directly influenced
temporary policy degradation episodes. Yet, the actor
consistently recovered from these episodes, indicating
resilience in learned behavior.

Summary of Findings

While the DDPG algorithm demonstrated notable improve-
ment in navigational performance (fewer collisions, higher
rewards over time), it exhibited significant instability in value-
function estimation. Actor performance steadily improved,
while critic predictions diverged, a common limitation of
vanilla DDPG.

The empirical TD3 results demonstrate significant improve-
ments over initial DDPG performance. TD3 substantially stabi-
lized actor learning, leading to consistently better action selec-
tion and smoother policy behavior. However, despite notable
improvement, the critic network showed periodic instability
especially late in training—reflecting inherent challenges in
accurately approximating highly variable and sparse rewards
in the environment.



VI. CONCLUSION AND FUTURE WORK

This project explored the use of deep reinforcement learn-
ing—specifically DDPG and TD3 for training a differential-
drive robot to navigate an escape-room-style environment.
Both algorithms, particularly TD3, enabled the agent to
significantly reduce collisions and demonstrate goal-seeking
behavior through smooth, continuous control. Actor-critic ar-
chitectures, paired with shaped rewards, facilitated optimal
policy learning over thousands of episodes. The agent did
not consistently reach the goal. Limitations such as sparse
rewards, partial observability, and critic instability constrained
optimal policy convergence. To address these challenges and
further enhance performance, we propose the following future
directions:

e Curriculum Learning - Gradually increase environment
complexity, beginning with simple layouts and introduc-
ing obstacles incrementally. This approach can help the
agent build foundational skills before tackling harder
tasks.

« Hindsight Experience Replay (HER) - Apply HER to
DDPG and TD3 to combat sparse reward issues. Refram-
ing failed episodes as successful with alternative goals
offers richer learning signals and encourages exploration.

o Reward Reshaping - Refine the reward structure by
incorporating intermediate proximity rewards or subgoal
bonuses. Potential-based reward shaping can provide
learning guidance without altering the optimal policy.

o Algorithmic Refinements - Further evaluate DDPG and
TD3 while exploring alternatives like Soft Actor-Critic
(SAC). Hyperparameter tuning and architecture scaling
will also be considered to match environment complexity.

In summary, combining curriculum learning, HER, and im-
proved reward shaping with robust RL algorithms like DDPG
and TD3 offers a promising path toward developing general-
izable, stable, and real-world-capable navigation agents.
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