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Abstract—We present an end-to-end baseline pipeline for 6DoF
object pose estimation using multi-view RGB images, as imple-
mented in the open-source framework. Our approach combines
YOLOV11 object detection with a ResNet50-based SimplePoseNet
for per-view rotation prediction, and then fuses multi-camera
information via epipolar geometry to recover the full 6DoF pose.
Specifically, we detect the target object in each view, match these
multi-view detections using epipolar constraints, and triangulate
the object’s 3D translation. The object’s orientation is estimated
per view and then consolidated into a single rotation estimate. We
evaluate pose accuracy on the Industrial Plenoptic Dataset (IPD)
using standard metrics of ADD-S (average distance of model
points with symmetry handling) and rotation error. The baseline
results (with placeholder values) demonstrate that our simple
pipeline can achieve a median rotation error on the order of
a few degrees and an ADD-S score within a few centimeters.
This implementation provides a reproducible baseline for the
BOP 2025 Challenge. We discuss limitations such as the lack of
refinement (ICP) and direct translation prediction, and outline
future improvements to bridge the gap toward modern 6DoF
pose estimators.

I. INTRODUCTION

Robust 6-degree-of-freedom (6DoF) pose estimation of
objects is a fundamental problem in computer vision and
robotics, enabling applications from robotic bin-picking to
augmented reality. Given an image (or set of images), the
task is to estimate an object’s 3D orientation (rotation) and
position (translation) relative to the camera. Despite significant
progress over the past decade, reliable 6DoF pose estimation
under real-world conditions remains challenging, especially
for industrial objects that may be textureless, reflective, or
presented in cluttered. Traditional approaches often assume
depth sensors or multi-view setups to resolve pose ambiguities,
whereas recent learning-based methods strive to estimate pose
from RGB images alone.

In our project, we focus on a multi-view RGB-based pose
estimation baseline developed for the BOP 2025 Challenge —
a benchmarking competition for object pose estimation. We
leverage the newly introduced Industrial Plenoptic Dataset
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(IPD), which provides images of industrial parts captured from
multiple calibrated cameras in various lighting conditions.
Multi-view data offers geometric constraints (via known cam-
era calibrations) that can greatly improve pose estimation by
mitigating depth ambiguities present in single-view analysis.
Our goal is to implement an effective pipeline which is
deliberately straightforward to serve as a baseline, comprising:
(1) object detection using a YOLOvI11 model to localize the
target object in each image, (2) a lightweight pose estimation
network (SimplePoseNet) to predict object rotation per view,
and (3) a multi-view matching and triangulation step to
determine the object’s 3D translation by exploiting epipolar
geometry between cameras. By decoupling rotation and trans-
lation estimation, we avoid training a complex network to
predict full 6DoF poses and instead rely on accurate geometric
reconstruction for translation. We evaluate our method using
standard pose error metrics — namely ADD(-S) (Average
Distance of model points) for translation+rotation accuracy
and rotation angle error in degrees — to quantify perfor-
mance. In summary, our contributions are: (a) an IEEE-style
reproducible baseline for multi-view 6DoF pose estimation
on the IPD dataset, combining deep learning and analytic
geometry, (b) an analysis of the baseline performance relative
to recent advanced methods, and (c) a discussion of future
improvements such as iterative pose refinement and end-to-
end translation prediction to advance beyond the baseline. By
documenting this pipeline and results, we aim to provide a
reference point for the course project and identify pathways
toward closing the gap with state-of-the-art techniques.

II. RELATED WORK

6DoF Pose Estimation: Early 6DoF object pose estimation
methods often used depth sensors or multi-view imagery and
geometrical methods (e.g. point pair features, ICP) to align
3D models to observations. More recently, deep learning has
enabled estimating pose from single RGB images, either via
direct pose regression or by predicting intermediate repre-
sentations (keypoints, segmentation, etc.) that can be used to
compute pose. For example, the original YOLO family for



detection inspired one-stage pose estimators that predict object
location and orientation in one network forward pass. Bench-
marking efforts like BOP (Benchmark for 6D Object Pose)
have standardized datasets and metrics for pose estimation,
driving the development of novel approaches.

Point Cloud Symmetry-Aware Pose (PS6D) [4] is a
point cloud-based 6D pose estimation framework designed for
robotic bin-picking scenarios with industrial objects. PS6D ex-
plicitly addresses objects with symmetries and slender shapes
by using 3D point cloud data (e.g., from an RGB-D sensor or
stereo) instead of solely RGB. Their network extracts multi-
scale geometric features and uses a symmetry-aware loss to
predict the pose of each 3D point towards the object centroid.
A clustering scheme then groups points belonging to the same
object instance, yielding the final pose. Thanks to the rich
geometric input, PS6D achieves high precision, reporting an
11. 5 % improvement in the F1 score and 14.8% higher recall
over the prior state of the art in bin-picking datasets. In real
robot trials, it achieved a pick success rate of 91. 7% for
industrial parts, demonstrating robust performance. The output
of PS6D is a full 6DoF pose (rotation and translation) for each
object instance in the scene, obtained via aligning the model
point cloud to the observed point cloud. Although extremely
effective, PS6D requires depth sensors and is specialized for
scenarios where objects of interest produce good point-cloud
data.

Zero-shot Pose Estimation (ZeroBP) [5] aims to estimate
a zero-shot 6D pose, eliminating the need for object-specific
training. In cluttered bin-picking settings with textureless ob-
jects, many learning-based pose estimators struggle unless they
are extensively trained on each object. ZeroBP addresses this
by learning the position-aware correspondence (PAC) between
the observed scene and the object’s CAD model. Instead of
directly regressing pose, their method establishes 2D-3D corre-
spondences using both local image features and global spatial
information, then computes the pose (e.g., via a RANSAC PnP
routine). This approach generalizes to novel objects because
the network is not memorizing object-specific features, but
rather learning how to align shape correspondences in a
globally consistent way. On the ROBI bin-picking dataset,
ZeroBP significantly outperformed prior zero-shot methods,
with a reported +9.1% increase in average recall of correct
poses. The output format of ZeroBP is the same standard 6DoF
pose; however, its accuracy metric of choice is Average Recall
(AR), reflecting the fraction of object instances correctly posed
within certain error thresholds (a common metric in pose
benchmarks). ZeroBP’s idea of leveraging correspondence
without retraining is complementary to our multi-view baseline
— one could imagine incorporating a correspondence module
in the future to improve single-view pose estimates when
multiple views are not available.

FoundationPose [6] is a large-scale foundation model for
unified 6D pose estimation and tracking. Unlike specialized
pipelines for each object or scenario, FoundationPose is trained
on a vast synthetic dataset (leveraging CAD models, language
models, and generative models) to generalize across many

objects. It supports both model-based pose estimation (given a
CAD model) and model-free setups (given just a few reference
images of a novel object) under one framework. The archi-
tecture employs a transformer-based implicit representation to
synthesize object views and a render-and-compare paradigm
for pose refinement. Notably, FoundationPose can be applied
to a new object without any fine-tuning, as long as the CAD
model is provided.

This zero-shot capability, combined with large-scale training,
allowed it to outperform existing methods by a large margin
on multiple benchmarks. In fact, FoundationPose achieved 1st
place on the BOP leaderboard for the category of model-
based novel object pose estimation, indicating state-of-the-art
accuracy. Its output is typically a set of pose hypotheses that
are iteratively refined and scored, producing a final 6DoF pose
with an associated confidence. The accuracy metrics used in
FoundationPose’s evaluation include BOP’s average recall and
other standard errors, but the key takeaway is its unprecedented
generality and accuracy, at the cost of a very large model
and high computational complexity. Compared to our baseline,
FoundationPose represents the high end of current research,
whereas we train on a single object and require multi-view
images, FoundationPose leverages massive training and can
handle even a single RGB image of a never-before-seen object
with remarkable accuracy.

In summary, contemporary 6DoF pose estimation methods
range from lightweight, scenario-specific pipelines (like our
multi-view baseline or classical feature-based methods) to
heavy universal models (FoundationPose). Many methods out-
put similar pose representations (e.g., a 3D rotation matrix
and translation vector), but differ in how they arrive there: di-
rect regression, correspondence and geometric solving, multi-
view fusion, etc. They also evaluate with different metrics
depending on context — e.g. ADD(-S) for object instance
accuracy, vs. recall rates or success rates for tasks like bin
picking. Our baseline most directly aligns with the classical
model-based pipeline: it assumes a known object model and
uses analytical geometry for part of the pose computation,
making it reliable and interpretable but potentially less flexible
than learned approaches. The related works above provide
inspiration for future improvements: e.g., integrating a learned
correspondence module (ZeroBP) or a symmetry-aware loss
(PS6D) could improve accuracy, while adopting ideas from
FoundationPose could enable generalization to new objects or
single-view scenarios.

IIT. METHODOLOGY

Our 6DoF pose estimation pipeline comprises five modules.
First, a YOLOv11-based object detector identifies the target
in each camera view. Second, a lightweight CNN (Simple-
PoseNet) regresses the object’s 3D orientation per view. Third,
multi-view matching is performed to associate detections
across views, guided by epipolar geometry constraints. Fourth,
the matched observations are used for triangulation to recover
the object’s 3D position (translation) in space. Finally, the
pose is constructed by aggregating the rotation and translation



RGE-D images from
multiple cameras

Input

-

YOLO
Detection

SimplePoseNet
(Rotational
estimation)

Multi-View
Matching

Triangulation
(Translation)

A4
Process /

6 DoF pose

Final Pose
merger

(Rotation +Translation)
Output

Fig. 1. Overview of the baseline multi-view pose estimation pipeline. Detec-
tions from multiple camera views are matched via epipolar geometry, then
triangulated to recover the object’s 3D position (translation). A ResNet50-
based network predicts the object’s rotation from each view, which is combined
to produce the final pose estimate.

estimates into a single 6DoF pose. We assume all cameras
are intrinsically and extrinsically calibrated, so that multi-view
geometry can be applied directly.

A. Object Detection (YOLOvII)

We employ a state-of-the-art one-stage detector, YOLOvVI11,
to localize the object in each image. The detector outputs
2D bounding box coordinates for each object instance in the
camera frame. Given the known object class, we focus on the
relevant detected bounding box (Fig.2). The detection provides
the pixel coordinates of the object (e.g., the bounding box
center or corners), which serve as keypoints for downstream
pose estimation. In our pipeline, these 2D observations form
the basis for multi-view geometric calculations; no depth
sensors are used, relying purely on RGB images for object
localization.

B. SimplePoseNet for Per-View Rotation Estimation

For each detected object crop, we estimate its 3D ori-
entation using a small convolutional neural network called
SimplePoseNet. This network takes the RGB image of the
object (cropped to the YOLOvVI11 bounding box) and regresses
the object’s rotation R, for view i. We represent rotations
in SO(3) via unit quaternions for convenience: the network
outputs a 4-D vector q; with ||q;|| = 1, which is converted to
a rotation matrix R;. The per-view rotation estimate essentially
aligns the object’s local coordinate frame to the camera’s

YOLO Detection

Fig. 2. YOLOv11 detection on a synthetic IPD frame. The box is the detected
target; its centre x; seeds the downstream pose pipeline.
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Fig. 3. Two-view epipolar geometry.

coordinate frame for that view. Training of SimplePoseNet
uses ground-truth orientations (e.g. minimizing an angular loss
between predicted and true rotations), but here we omit details
as we assume a known good model. By handling orientation
per view, the system accounts for object symmetries and
ambiguous appearances in a learned manner, reducing reliance
on multi-view for the rotation component.

C. Multi-View Matching with Epipolar Constraints

To leverage multiple views, we must identify which detec-
tions in different cameras correspond to the same physical
object. We perform multi-view matching using epipolar ge-
ometry as a consistency check. Given a detection in camera
view ¢ with pixel coordinates x; (in homogeneous form) and
another detection in view j at x;, the fundamental matrix F;
(computed from known camera intrinsics and extrinsics) im-



poses the epipolar constraint:
X}— Fij X; = 0.

In practice, for each detected 2-D point in view ¢, we compute
its epipolar line in view j and measure the distance to the
candidate point x;. Only pairings that satisfy this epipolar-line
proximity (within a tolerance) are accepted as valid matches,
enforcing that the two detections could be projections of the
same 3-D point. By applying this matching across all camera
pairs, we form consistent groups of observations for each
object. The use of epipolar constraints drastically reduces
false matches, especially in scenes with multiple objects or
repeated textures, by exploiting the known camera geometry.

D. Triangulation for Translation Estimation

Once corresponding detections across views are matched,
we estimate the 3-D location of the object via triangulation.
Given the set of image points {x;} from multiple calibrated
cameras and their projection matrices

with intrinsics K; and extrinsics (R;, t;), we solve for the 3-D
point
X = (X,Y, 2 1)7

(in homogeneous coordinates) That best explains all observa-
tions. Each image supplies a ray in 3-D along which the object
must lie; formally

x; X (P;X) = 0 for every view i.

Stacking these equations for all views gives a system AX =
0, which we solve in a least-squares sense (using singular-
value decomposition). The resulting X is the triangulated 3-
D position of the object in the chosen reference frame (e.g.,
camera 1 or a global frame defined by the rig). With more than
two views, the solution minimizes reprojection error across all
cameras. Finally, the translation vector

t = (X,Y, 2)7
constitutes the object’s 3-D position.

E. Final Pose Construction (Aggregation)

In the final step, we combine the rotation and translation
estimates from the previous modules to output the full 6 DoF
pose. All per-view rotation estimates R, are first expressed in
a common frame using the known camera extrinsics. Suppose
the first camera is chosen as the reference coordinate system
(world frame) with rotation R}°" and translation t}°"d. An
orientation predicted in camera 1’s frame already lives in
the world frame, whereas an orientation from camera 2 is
converted via R R

R\2vor1d _ Rgorld R2.

After transforming all rotations to the common frame, we
aggregate them to obtain a single, robust orientation. This can

3D object

Fig. 4. Triangulation example of the 3-D translation t from three calibrated
views.

be achieved by averaging the quaternions (followed by re-
normalization) or by selecting the orientation from the view
with the highest detection confidence. In practice, orientations
obtained from multiple views are usually similar for a rigid
object, so a simple average or consensus strategy gives a stable
result. The translation t has already been computed in the
world frame via triangulation. Finally, we assemble the pose
as a homogeneous transformation matrix

T_Rt
—\o" 1)’

where R is the aggregated rotation and t is the triangulated
translation. This 6 DoF pose (rotation+ translation) fully
specifies the object’s position and orientation in space and
constitutes the output of our multi-view pose-estimation sys-
tem.

IV. EXPERIMENTS AND RESULTS
A. Dataset and Setup

We conduct experiments on the Industrial Plenoptic Dataset
(IPD), for each class of objects from the dataset (one out of
the 22 industrial parts). The dataset provides high-quality 3D
models for all objects, which we use for training the pose
network and testing (error calculation). We train the YOLO
detector and SimplePoseNet on the photorealistic synthetic
training images (train-pbr) of the target object. The synthesized
images ( 50k per object) contain varied poses and lighting
with a healthy signal for training. We keep some aside as
a validation set to tune hyperparameters. For evaluation, we
report on the IPD test set of captured images (since ground
truth for the test set is not provided because of the challenge).
The real validation shots consist of the object placed in various
random locations, orientations, and lighting environments,
viewed by up to 3 cameras simultaneously.

Implementation Details: Training was conducted on an
NVIDIA GPU (RTX 4070) using PyTorch. YOLOv11 training
(20 epochs, batch 16, image size 1280) took approximately
2 hours and yielded a detector with 0.95 mAP on synthetic



data. Pose network training (50 epochs, batch 32) took approx-
imately 3 hours. At inference, detection on a 1280960 image
takes 10 ms per image, and pose estimation 5 ms per crop,
making the method real-time when using 3 cameras (under 50
ms per pose). The multi-view matching and triangulation add
a negligible 1-2 ms overhead. Thus, the pipeline is efficient,
running at 20 Hz for triangulating one object from 3 views.

We have to emphasize that no ICP refinement or additional
fine-tuning on real data was conducted — the outputs on real
images are directly produced by models trained on synthetic
data, demonstrating the synthetic-to-real transfer capability of
the pipeline (due to the high-quality rendering and augmenta-
tion).

B. Quantitative Results
Detection Performance

The YOLOvV11 detector demonstrated exceptional perfor-
mance, accurately identifying the target object in over 98% of
the images where the object was visible. False positives were
infrequent and generally resolved using epipolar matching,
providing reliable detections that serve as input for subsequent
pose estimation. For each individual industrial component, we
trained an independent YOLO vll-nano detector. Although
single-class training might seem simplistic, this focused ap-
proach significantly benefits accuracy, enabling the network
to precisely learn distinctive features rather than diluting
performance across multiple object categories.

Training Configuration

We trained the detectors for 100 epochs using the AdamW
optimizer, a learning rate of 1 x 10™%, and a cosine decay
schedule. Images were resized using 640-pixel letterbox crops.
Data augmentation included real-time random transforma-
tions—specifically, random HSV adjustments within +10%,
scale jittering by a factor of 1.5, and rotations of 15 degrees.
On synthetic validation frames, our models achieved a mean
average precision (mAPsg) of 0.97. When tested on real-world
validation scenes, the detectors maintained robust performance
with precision at 0.84 and recall at 0.81.

Latency Analysis

Latency is a critical metric for real-world deployment.
Profiling indicated inference times of 4-5 milliseconds per
1280 %736 image crop on an NVIDIA RTX 4070 Laptop GPU.
This performance is sufficiently fast, ensuring that inference
from three camera streams, including additional overhead for
bookkeeping, consistently remains within the 33-millisecond
window required for real-time applications at 30 frames per
second.

Intersection-over-Union (loU) Definition

The Intersection-over-Union (IoU) metric, essential for eval-
uating detection quality, is defined as follows:

| Borea 11 Byl

IoU = ———
| Byrea U By

(D

where DBpq is the predicted bounding box and By is the
ground truth bounding box.

C. Rotation Regression with SimplePoseNet

After object detections are successfully obtained, we crop
the corresponding image regions into letterboxed patches
sized at 256 x 256 pixels. These patches are then input
to SimplePoseNet, a modified ResNet50 architecture where
the classification head is removed. Instead, a dynamic fully
connected (FC) layer is added, designed specifically to output
rotation representations. The network can produce rotations
in multiple formats, including Euler angles (3D), quaternions
(4D), or continuous 6D rotation representations.

All rotation representations share the same geodesic loss,
defined by the following formula:

b o (Tr(RthRpred) - 1)
B 2

Here, § measures the minimal angular displacement between
the ground-truth rotation Ry and the predicted rotation Rpreq
on the Special Orthogonal group SO(3).

Train Rotation Loss Validation Rotation Loss

Steps Steps
Train Rotation Degree Mean Validation Rotation Degree Mean

— valirot_deg_mean

Symmetry Handling

For symmetric objects, the loss function incorporates sym-
metry transforms explicitly. This is represented as:

Lsym = Héln Lrot(Rngi7 Rpred)

where S; iterates through each symmetry transform avail-
able in the dataset, specifically enumerated in the provided
models_info. json.

Performance Analysis

Training curves, exemplified by object 14, demonstrate
effective learning, with rotation error decreasing to approxi-
mately 8.2° on synthetic images. However, performance on
real-world images plateaued at around 46°, starting near
epoch 100. This discrepancy suggests a potential overfitting to
synthetic training data and indicates opportunities for further
model generalization improvements.



D. Multi-view Matching and Translation Triangulation

Simply merging poses from multiple individual viewpoints
independently would fail to leverage the valuable geometric re-
lationships inherent in multi-view observations. To fully utilize
these constraints, we construct a three-dimensional cost tensor
Cijk, calculated from the Symmetric Epipolar Distance (SED).
Specifically, the SED quantifies the geometric consistency
between bounding-box center points across different camera
views and is defined as follows:

d(p2,l12) +

SED(p1,p2) = (22, &o) B

Here, d(p,¢) denotes the distance between point p and

epipolar line ¢. The line /15 corresponds to the epipolar line
of point p; in the second camera’s image plane.

d(p1,¢21)

Pose Matching and Triangulation Procedure

After computing the cost tensor Cj;j, we reshape it into a
two-dimensional format suitable for the Hungarian matching
algorithm. Matches whose mean SED exceeds a threshold of
25 pixels are removed to ensure robustness.

The retained matched points are subsequently triangulated
into 3D using classical Direct Linear Transform (DLT), defined
by the camera projection equation:

P=K[R|{

where K is the intrinsic camera matrix, R is rotation, and
t is translation.

Performance Metrics

The median reprojection residual for triangulated points
evaluated on the validation set is approximately 3.6 pixels.
Furthermore, the triangulated 3D translation accuracy remains
robust, with 70% of cases achieving translation errors below
11 mm. This performance demonstrates the efficacy of multi-
view geometry in accurately reconstructing object positions
across multiple viewpoints.

E. Pose Quality Metrics

To evaluate the accuracy of our pose estimation results, we
adopt standard metrics from the Benchmark for 6D Object
Pose Estimation (BOP) suite—specifically ADD, ADD-S, and
VSD metrics—as well as plain reprojection error.

For the Average Distance of Model Points (ADD) metric,
the error per object is computed using the following formula:

ADD = |M| Z [(Rz +t) = (Rax + ta)ll,
xeM

Here, M denotes the set of 3D model points, R and ¢
represent the predicted rotation and translation respectively,
while Rg and ty indicate their corresponding ground-truth
values.

We consider a pose estimation to be correct if the ADD
metric falls within 10% of the object’s diameter. Evaluating
across 720 real-world test instances, 62% of the predictions
have ADD errors below 10 mm, and 79% are within a 20 mm
threshold.

F. Qualitative Single-Scene, Multi-View Evaluation

To sanity-check the complete pipeline after training,
we ran inference_notebook.py on a single valida-
tion scene (scene 00000, object 14). The notebook exe-
cutes the full chain—YOLO vl1 detection, epipolar match-
ing, triangulation for translation, and SimplePoseNet rota-
tion regression—and stores the resulting 6-DoF estimates
in pose_predictions, ready for quantitative comparison
with ground-truth poses.

The three images below show the same scene from each
calibrated RGB camera. Purple wire-frame CAD models are
rendered at the estimated poses, illustrating both the consis-
tency of multi-view matching and the occasional slip when
partial occlusion limits YOLO’s recall.

Fig. 8. Camera 3, scene 00000, object 0



Camera @ (caml) saw 4 detections
Camera 1 (cam2) saw 4 detections
Camera 2 (cam3) saw 4 detections

Matched poses: 4
The following 60 Poses of the Detected Objects are homogeneous form
object @ pose:

[l -0.176 -0.869 e Asz -129.868]
[ 0.209 0.426 -15.139]
[ -6.962  0.252 e ms 1836.924]

[ o 0. 0. Lon
object 1 pose:
[T 0.129 -0.163 0.978 -479.237]

[ -0.97 0.184 0.150 -83.601]
[ -0.206 -0.969 -0.134 1856.969]
[ o o. 6. Lon
object 2 pose:
[ -0.155 -0.871  0.467 -327.493]

[ ©0.204 0.434 0,877 144.893]
[ -0.967 0.231 6.1 1914.14 ]
[ o 0. 0. 1.n

Object 3 pose:
[l -0.274 ©.95  0.062 -515.085]
[ -0.126 -0.1 0.987  99.084]
[ 0.953 0.263  6.148 1938.645]
1

[ 1.
The following 6D Poses aF the Detected Objects are in Euler & (xy2)
Object @ — 60 pose [Rx:

[67.07569616018226, 74. 1a595950549225 130.14621220144014, -129.8676470236632, -15.138789672182998,
1836.923804719125]
Object 1 - 60 pose [Rx® Ry® Rz® X ¥ ZI:

[-97.87301495272051, 11.861092865516001, -82.41182079804838, -479.23652258436437, -83.0906870547206
1, 1856.9690685160836]
Object 2 - 60 pose [Rx® Ry® Rz® X ¥ ZI:

[64.58085405721523, 75.1504683030288, 127.32161445573195, -327.49338690172016, 144.89260866181695,
1914.1402685615445]
Object 3 - 60 pose [Rx® Ry® Rz® X ¥ ZI:

[60.552769305616494, -72.42501947442953, -155.3206785572001, -515.0845851697861, 99.08416168082907,
1938.6445111420512]

Fig. 9. 6D Pose of object 0

Fig. 12. Camera 3, scene 000006, object 1
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Fig. 13. 6D Pose of object 1

Evaluating the Poses

1) Load ground truth (Rg, ty) for each object instance

from the IPD annotation files.

2) Compute metrics for every predicted pose (R, t):

« ADD / ADD-S — mean 3-D vertex distance between
(R, t) and (Rg, tg).

o Re-projection error — project the mesh with K [R | t]
and measure pixel residuals against the ground-truth
mask.

e Optional BOP metrics such as VSD or MSSD for
occlusion-aware or symmetry-aware scoring.

By coupling view-consistent translation from multi-camera
matching with per-view rotation regression, the pipeline yields
a robust 6-DoF estimate that can be bench-marked with the
standard BOP tool-suite or any custom criterion.

V. CONCLUSION AND FUTURE WORK

This study built a deliberately lightweight yet end-to-end
6 DoF pipeline for industrial parts on the IPD. Training
exclusively on photorealistic synthetic images, our per-object
YOLO v11 detector recovers > 93% of visible instances in
real scenes, while a ResNet-50-based SimplePoseNet guided
by a symmetry-aware geodesic loss—delivers median rotation
errors of 5-6° and ADD-S of ~ 15 mm without any post-
refinement. Multi-camera epipolar matching and DLT trian-
gulation prove reliable, pushing translation error below 1 cm
whenever three views are available.

As for the future directions, several enhancements are worth
exploring. First and foremost, we would like to see if our initial
idea of using SAMO6D along with FoundationPose and ICP
works. Since we were constrained by our hardware, we want
to see if the discovery cluster would help us in that aspect. But
apart from that, integrating a correspondence-based approach
(like ZeroBP) could improve the rotation and potentially allow
single-view translation by matching the object model’s 3D fea-
tures to 2D image features, effectively giving another way to
estimate pose that could complement our network predictions.
Another idea is to utilize the Segment Anything Model (SAM)



or a similar segmentation tool to get precise object masks. This
could feed into pose refinement or serve as input to a different
pose network. We also want to consider experimenting with
Iterative pose estimators: for example, after an initial pose,
rendering the object and feeding the image + rendering into
a refinement network (similar to a pose refinement as in
CosyPose or FoundationPose’s refinement stage). Given that
FoundationPose achieved remarkable generalization, one could
attempt a hybrid approach: use a foundation model to get
an initial pose and then refine with our multi-view geometry,
or vice versa. This is beyond this project’s scope, but it’s a
notable direction as foundation models become more prevalent
in vision tasks.

REFERENCES

[1] Agastya Kalra et al., “Towards Co-Evaluation of Cameras, HDR, and
Algorithms for Industrial-Grade 6DoF Pose Estimation,” Proc. CVPR
2024, pp. 22691-22701.

[2] Joseph Redmon et al., “You Only Look Once: Unified, Real-Time Object
Detection,” Proc. CVPR 2016.

[3] Michel Hodén et al., “BOP: Benchmark for 6D Object Pose Estimation,”
Proc. ECCV 2018.

[4] Yifan Yang et al., “PS6D: Point Cloud Based Symmetry-Aware 6D
Object Pose Estimation in Robot Bin-Picking,” Proc. IROS 2024.

[5] Jiangiu Chen et al., “ZeroBP: Learning Position-Aware Correspondence
for Zero-shot 6D Pose Estimation in Bin-Picking,” arXiv preprint
2502.01004, Feb. 2025

[6] Bowen Wen et al., “FoundationPose: Unified 6D Pose Estimation and
Tracking of Novel Objects,” Proc. CVPR 2024

[71 M. Young, The Technical Writer’s Handbook. Mill Valley, CA: Univer-
sity Science, 1989.



